Ecoflex® 15 Plus

äußerst flexibel, verlustarm und geeignet für den Einsatz bis zu 8 GHz

Ecoflex 15 Plus verfügt über bemerkenswerte elektrische und mechanische Verbesserungen. Der Aufbau und die Verwendung von Materialien sind optimiert auf geringste Dämpfung, eine um 2 GHz gesteigerte max. Frequenz, erstklassige Verlegeeigenschaften, hohe Langzeitstabilität und nicht zuletzt geringes Gewicht. Diese Kombination optimaler physikalischer Eigenschaften werden erreicht durch die Verwendung eines Präzisions-Hybrid-Innenleiters mit mikroverschweißtem Kupfermantel und Aluminiumkern.

Ecoflex 15 Plus ist ein äußerst flexibles und dabei sehr dämpfungsarmes 50 Ohm Koaxialkabel für den Einsatz bis 8 GHz. Modernste Produktionsverfahren und die Verwendung eines verlustarmen PE-LLC-Dielektrikums mit einem Gasanteil von über 70% ermöglichen sehr günstige Dämpfungswerte. Der innovative Kabelaufbau von Ecoflex 15 Plus kombiniert die äußerst geringen Dämpfungseigenschaften von 1/2"-Kabeln mit starren Innenleitern mit den mechanischen Eigenschaften von flexiblen, aber verlustreichen Standard-Koaxialkabeln mit Litzeninnenleitern und stellt so eine ideale Kombination dar. Die gute Flexibilität von Ecoflex 15 Plus wird durch einen 7-drähtigen Hybrid-Innenleiter mit Aluminiumkern und verschweißtem Kupfermantel sichergestellt. Der Innenleiter wird in hochpräzisen Produktionsschritten verseilt, komprimiert, kalibriert und anschließend mit einem Precoating versehen, um sehr gute Dämpfungs- und Anpassungswerte zu erzielen. Ein weiterer Pluspunkt ist die doppelte Schirmung: eine überlappende Kupferfolie und ein darüberliegendes Kupfergeflecht sorgen für ein hohes Schirmmaß von > 90 dB bei 1 GHz. Der schwarze PVC-Außenmantel von Ecoflex 15 Plus ist UV-stabilisiert. Zur Vereinfachung der Installation wurden lötfreie Stecker der Normen N, UHF und 7-16 DIN entwickelt, die optimale Kontaktierung bieten sowie einfach und ohne Spezialwerkzeuge in kurzer Zeit konfektioniert werden können. Ecoflex 15 Plus ist ein modernes Koaxialkabel für viele Applikationen in der Hochfrequenztechnik: dämpfungsarm, langzeitstabil, flexibel, störstrahlungssicher und einsetzbar bis in den Mikrowellen-Bereich.

Kenndaten

 $\begin{array}{lll} \text{Durchmesser} & 14,6 \pm 0,3 \text{ mm} \\ \text{Impedanz} & 50 \pm 2 \, \Omega \\ \text{Dämpfung bei 1 GHz/100 m} & 9,80 \text{ dB} \\ \text{f max} & 8 \text{ GHz} \\ \text{Euroklasse nach EN 50575} & \text{Eca} \\ \end{array}$

Eigenschaften

Mantelmaterial gemäß DIN EN 50290-2-22 (VDE 0819), Mischungstyp TM 52 (HD 624.2) Flammwidrig nach IEC 60332-1-2 RoHS konform (Directive 2011/65/EC & 2015/863/EU RoHS 3) UV-beständig

Technische Daten

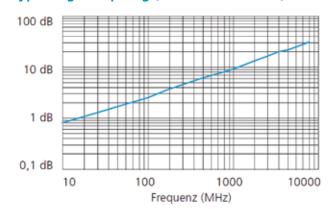
Innenleiter	Hybrid CCA - kupferkaschierte Aluminium-Litze verseilt
Innenleiter Ø	4,5 mm (7 x 1,5 mm)
Dielektrikum	geschäumtes Zell-Polyethylen (PE) mit Haut
Dielektrikum Ø	11,3 mm
Außenleiter 1	Cu-Folie überlappend
Bedeckungsgrad	100%
Außenleiter 2	Cu-Geflecht
Bedeckungsgrad	75%
Außenleiter Ø	12,1 mm
Außenmantel	PVC schwarz, UV-stabilisiert
Gewicht	167 kg/km
Min. Biegeradius	4XØ einmalig, 8XØ wiederholt
Temperaturbereich	-55 bis +85°C Transport & feste Installation
	-40 bis +85°C Mobiler Einsatz

Elektrische Daten bei 20°C

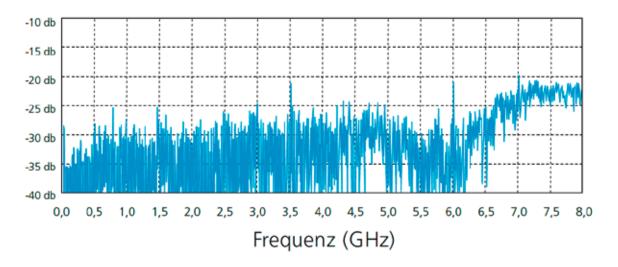
Max. Zugbelastung 1300 N

Kapazität (1 kHz)	78 nF/km
Verkürzungsfaktor	0,85
Schirmdämpfung 1 GHz	≥ 90 dB
Gleichstrom-Widerstand Innenleiter	\leq 2,5 Ω /km
Gleichstrom-Widerstand Außenleiter	5,0 Ω /km
Isolationswiderstand	\geq 10 G Ω *km
Testspannung DC (Innenleiter/Außenleiter)	7 kV
Max. Spannung	5 kV

	Ecoflex 15 Plus	RG 213/U	RG 58/U
Kapazität	78 pF/m	101 pF/m	102 pF/m
Verkürzungsfaktor	0,85	0,66	0,66
Dämpfung (dB/100m)			
10 MHz	0,86	2,00	5,00
100 MHz	2,81	7,00	17,00
500 MHz	6,70	17,00	39,00
1000 MHz	9,80	22,50	54,60
3000 MHz	18,30	58,50	118,00


Typ. Dämpfung (db/100 m bei 20°C)

5 MHz	0,60	1000 MHz	9,80
10 MHz	0,86	1296 MHz	11,40
50 MHz	1,96	1500 MHz	12,40
100 MHz	2,81	1800 MHz	13,80
144 MHz	3,40	2000 MHz	14,60
200 MHz	4,05	2400 MHz	16,20
300 MHz	5,00	3000 MHz	18,30
432 MHz	6,10	4000 MHz	21,60
500 MHz	6,70	5000 MHz	24,60
800 MHz	8,60	6000 MHz	27,50
		8000 MHz	32,70


Max. Belastbarkeit (W bei 40°C)

10 MHz 5.021 2400 MHz 2	270
100 MHz 1.542 3000 MHz 2	236
500 MHz 655 4000 MHz	198
1000 MHz 446 5000 MHz	173
2000 MHz 300 6000 MHz	154
8000 MHz	129

Typ. Längsdämpfung (db/100 m bei 20°C)

Typ. Rückflussdämpfung

